Teaching Plan: 20<mark>1</mark>9 - <mark>20</mark>

Department:BScITSemester:I

Class: FYBScIT

Subject: Communication Skill

Name of the Faculty:Manasi Mule

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
June	The Seven C's of Communication, Introduction to Communication,		04
July	Cross-Cultural Communication, Listening, Interviews, Technology enabled communication, Reports, business writing, corporate communication, Group discussion		12
August	Resume Building, Communication across Functional areas, Non-Verbal communication, Business communication aids, Team Briefing, Career building, Public speaking.	Class Test	12
September	Presentations, proposals, team presentations, persuasive strategy in communication, Presentation skills, conversation, speaking skills,		08
October	Ethics in Business communication, Nature and Scope of communication		04

Sign of Faculty

Teaching Plan: 2019 - 20

Department:BScITSemester:I

Class:F.Y.BScIT

Subject: Digital Elelctronics

Name of the Faculty:Ms.Shruti Save

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	UNIT I		16
July	 Number System Analog System, digital system binary number system, octal number system, hexadecimal number system conversion from one number system to another weighted codes binary coded decimal non-weighted codes Excess – 3 code, Gray code, Alphanumeric codes – ASCII Code, EBCDIC, Hollerith Code, Morse Code, Teletypewriter (TTY), Error detection and correction, Code conversion. 		
	 Binary Arithmetic Binary addition Binary subtraction Negative number representation Subtraction using 1's complement and 2's complement Binary multiplication and division Arithmetic in octal number system, Arithmetic in hexadecimal number system, BCD and Excess – 3 arithmetic 		

	UNIT II		
	Boolean Algebra and Logic Gates		
	• Introduction, Logic (AND OR NOT)		
	• Boolean theorems, Boolean Laws, De		
	Morgan's Theorem		
	· · · · · · ·		10
Διισμετ			18
/ ugust	Boolean Algebra and Logic Gates	CLASS TEST	
	Reduction of Logic expression using		
	Boolean Algebra Deriving Replace expression from given		
	circuit		
	 exclusive OR and Exclusive NOR gates 		
	Universal Logic gates, Implementation of		
	other gates using universal gates		
	 Input bubbled logic 		
	Minterm, Maxterm and Karnaugh		
	Maps:		
	Introduction, minterms and sum of		
	minterm form, maxterm and Product of		
	Reduction technique using Karnaugh		
	maps $= 2/3/4/5/6$ variable K-maps		
	 Grouping of variables in K-maps. K-maps. 		
	for product of sum form, minimize		
	Boolean expression using K-map and		
	obtain K-map from Boolean expression.		
	 QuineMc-Cluskey Method. 		
	UNIT III		
	Combinational Logic Circuits:		
	• Introduction, Multi-input, multi-output		
	Combinational circuits		
	 Code converters design and 		
	implementations		
Contaration	UNIT III		18
September	Arithmetic Circuits:		
	• Introduction, Adder, BCD Adder,		
	Excess – 3 Adder		
	Binary Subtractors, BCD Subtractor, Multiplior, Comparator		
	Multiplayor Domultiplayor All		
	Encodor and Decodor:		
	Introduction Multiplever Demultiplever		
		1	1

	Decoder, ALU, Encoders.	
	Sequential Circuits: Flip-Flop:	
	• Introduction, Terminologies used, S-R	
	flip-flop, D flip-fop, JK flip-flop, Race-	
	around condition, Master – slave JK flip-	
	flop, T flip-flop,	
	Application of flip-flop	
October	UNIT IV	12
	Counters:	
	• Introduction, Asynchronous counter,	
	Terms related to counters, IC 7493 (4-bit	
	binary counter)	
	• Synchronous counter, Type T Design,	
	Type JK Design	
	• Presettable counter, IC 7490, IC 7492,	
	Synchronous counter ICs	
	Shift Register:	
	 Introduction, parallel and shift registers, 	
	serial shifting, serial-in serial-out, serial-	
	in parallel–out , parallel–in parallel–out	
	 Ring counter, Johnson counter, 	
	Applications of shift registers, Pseudo-	
	random binary sequence generator,	
	IC7495, Seven Segment displays, analysis	
	of shift-register	

Teaching Plan: 2019 - 20

Department:BScITSemester: I

Class: F.Y.BScITDiv: B

Subject: Digital Elelctronics

Name of the Faculty: Mrs. SnehalBorade

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	UNIT I		20
July	Number System		
	 Analog System, digital system 		
	• binary number system, octal		
	number system, hexadecimal		
	number system		
	conversion from one number		
	system to		
	another		
	 weighted codes binary coded 		
	decimal		
	non-weighted codes Excess – 3		
	code,		
	Gray code, Alphanumeric codes –		
	ASCII		
	Code, EBCDIC, ISCII Code, Hollerith		
	Code,		
	Morse Code, Teletypewriter (TTY),		
	Error		
	detection and correction, Code		
	conversion.		
	Rinany Arithmotic		
	Binary addition		
	Binary subtraction		
	Negative number representation		
	 Subtraction using 1's complement 		
	and 2's complement		
	Binary multiplication and division		
	Arithmetic in octal number system		
	Arithmetic in hexadecimal number		
	system, BCD and Excess – 3		

			-
	Boolean Algebra and Logic Gates		
	• Introduction, Logic (AND OR		
	NOT)		
	• Boolean theorems, Boolean		
	Laws, De		
	Norgan's Theorem		
	Boolean Algebra and Logic Gates		
	 Reduction of Logic expression using 		
	Boolean Algebra		
	 Deriving Boolean expression from 		
	given circuit		
	 exclusive OR and Exclusive NOR 		
	gates Universal Logic gates,		
	Implementation of other gates		
	using universal gates		
	 Input bubbled logic 		
	Minterm, Maxterm and Karnaugh		
	Maps:		
	 Introduction, minterms and sum 		
	of minterm form, maxterm and		
	Product of maxterm form.		
	 Reduction technique using 		
	Karnaugh maps – 2/3/4/5/6		
	variable K-maps.		
	 Grouping of variables in K-maps, 		
	K-maps for product of sum form,		
	minimize Boolean expression		
	using K-map and obtain K-map		
	from Boolean expression.		
	QuineMc- Cluskey Method.		
	UNIT III		20
August	Combinational Logic Circuits:		
	Introduction Multi-input multi-	CLASS TEST	
	output Combinational circuits		
	Code converters design and		
	implementations		
	Arithmatic Circuits.		
	A Introduction Adder DCD Adder		
	Freess - 3 Adder		
	Binary Subtractors BCD Subtractor		
	- Binary Subtractors, BCD Subtractor, Multiplier Comparator		
	iviultiplexer, Demultiplexer, ALU,		
	Encoder and Decoder:		

	 Introduction, Multiplexer, Demultiplexer, Decoder, ALU, Encoders. Sequential Circuits: Flip-Flop: Introduction, Terminologies used, S-R flip-flop, D flip-fop, JK flip-flop, Race-around condition, Master – 		
	slave JK flip-flop, T flip-flop, • Application of flip-flop		
	UNIT V		20
September	 Counters: Introduction, Asynchronous counter, Terms related to counters, IC 7493 (4-bit binary counter) Synchronous counter, Type T Design, Type JK Design Presettable counter, IC 7490, IC 7492, Synchronous counter ICs Shift Register: Introduction, parallel and shift registers, serial shifting, serial–in serial–out, serial–in parallel–out , parallel–in parallel–out Ring counter, Johnson counter, Applications of shift registers, Pseudo- random binary sequence generator, IC7495, Seven Segment displays, analysis of shift-register 		
	·	Total	60

Teaching Plan: 2019 - 20

Department: I.T. Class: F.Y.B.Sc.(I.T) Semester:I

Subject:Discrete Mathematics

Name of the Faculty:Kubra T.K.

Month	Topics to be Covered
July	Introduction: Variables, The Language of Sets, The Language of Relations and Function Set Theory: Definitions and the Element Method of Proof, Properties of Sets, Disproofs,
August	Algebraic Proofs, Boolean Algebras, Russell's Paradox and the Halting Problem. The Logic of Compound Statements: Logical Form and Logical Equivalence, Conditional Statements, Valid and Invalid Arguments 12 II Quantified Statements: Predicates and Quantified Statements, Statements with Multiple Quantifiers, Arguments with Quantified Statements Elementary Number Theory and Methods of Proof: Introduction to Direct Proofs, Rational Numbers, Divisibility, Division into Cases and the Quotient-Remainder Theorem, Floor and Ceiling, Indirect Argument: Contradiction and Contraposition, Two Classical Theorems, Applications in algorithms Sequences, Mathematical Induction, and Recursion: Sequences, Mathematical Induction, Strong Mathematical Induction and the WellOrdering Principle for the Integers, Correctness of algorithms, defining sequences recursively, solving recurrence relations by iteration, Secondorder linear homogenous recurrence relations with constant coefficients. general recursive definitions and structural induction. + Practicals
September	Functions: Functions Defined on General Sets, One-to-One and Onto, Inverse Functions, Composition of Functions, Cardinality with Applications to Computability 12 IV Relations: Relations on Sets, Reflexivity, Symmetry, and Transitivity, Equivalence Relations, Partial Order Relations Graphs and Trees: Definitions and Basic Properties, Trails, Paths, and Circuits, Matrix Representations of Graphs, Isomorphism's of Graphs, Trees, Rooted Trees, Isomorphism's of Graphs, Spanning trees and shortest paths. + Practicals
October	12 V Counting and Probability: Introduction, Possibility Trees and the Multiplication Rule, Possibility Trees and the Multiplication Rule,

Counting Elements of Disjoint Sets: The Addition Rule, The Pigeonhole
Principle, Counting Subsets of a Set: Combinations, rCombinations
with Repetition Allowed, Probability Axioms and Expected Value,
Conditional Probability, Bayes' Formula, and Independent Events.
+ Practicals

Teaching Plan: 2019 - 20

Department: I.T. Class: F.Y.B.Sc.(I.T) Semester:I

Subject:Imperative Programming

Name of the Faculty:SwetaChheda

Month	Topics to be Covered	Internal Assessment	Number of Lectures
July	 Unit I - Introduction: Types of Programming languages, History, features and application. Simple program logic, program development cycle, pseudocode statements and flowchart symbols, sentinel value to end a program, programming and user environments, evolution of programming models., desirable program characteristics. Fundamentals: Structure of a program. Compilation and Execution of a Program, Character Set, identifiers and keywords, data types, constants, variables and arrays, declarations, expressions, statements, Variable definition, symbolic constants. Unit II - Operators and Expressions: Arithmetic operators, unary operators, relational and logical operators, 		24
	assignment operators, assignment operators, the conditional operator, library functions.		
August	 Data Input and output: Single character input and output, entering input data, scanf function, printf function, gets and puts functions, interactive programming. Unit III - Conditional Statements and Loops: Decision Making Within A Program, Conditions, Relational Operators, Logical Connectives. If 	Internal Test	20

	Statement, If-Else Statement, Loops: While Loop, Do While, For Loop. Nested Loops, Infinite Loops, Switch Statement Functions: Overview, defining a function, accessing a function, passing arguments to a function, specifying argument data types, function prototypes, recursion, modular programming and functions, standard library of c functions, prototype of a function: foo1lal parameter list, return type, function call, block structure, passing arguments to a function: call by reference, call by value. + Practicals	
September	 Unit IV - Program structure: Storage classes, automatic variables, external variables, static variables, multifile programs, more library functions, Preprocessor: Features, #define and #include, Directives and Macros Arrays: Definition, processing, passing arrays to functions, multidimensional arrays, arrays and strings. Pointers: Fundamentals, declarations, Pointers Address Operators, Pointer Type Declaration, Pointer Assignment, Pointer Initialization, Pointer Arithmetic, Functions and Pointers, Arrays And Pointers, Pointer + Practicals 	22

Teaching Plan: 2019-20

Department: I.T. Class:F.Y.B.Sc.(I.T.) Semester:I

Subject:operating system

Name of the Faculty:AmitBane

Month	Topics	s to be Covered	Internal	Number of
			Assessment	Lectures
	1.	What is an operating system?		20
July		History of operating system,		
		computer hardware, different		
		operating systems, operating		
		system concepts, system calls,		
		operating system structure		
	2.	Processes, threads, interprocess		
		communication, scheduling, IPC		
		problems.		
	3.	No memory abstraction, memory		
		abstraction: address spaces, virtual		
		memory, page replacement		
		algorithms, design issues for		
		paging systems, implementation		
		issues, segmentation.		
	4.	Files, directories, file system		
		implementation, file-system		
		management and optimization,		
		MS-DOS file system, UNIX V7 file		
		system, CD ROM file system.		
	1.	Principles of I/O hardware,	Internal test (20)	15
August		Principles of I/O software, I/O		
		software layers, disks, clocks, user		
		interfaces: keyboard, mouse,		
		monitor, thin clients, power		
		management,		
	2.	Resources, introduction to		
		deadlocks, the ostrich algorithm,		
		deadlock detection and recovery,		
		deadlock avoidance, deadlock		
		prevention, issues.		
	1.	History, requirements for		25
September		virtualization, type 1 and 2		
		hypervisors, techniques for		
		efficient virtualization, hypervisor		
		microkernels, memory		
		virtualization, I/O virtualization,		

	Virtual appliances, virtual	
	machines on multicore CPUs,	
	Clouds.	
2.	Multiprocessors, multicomputers,	
	distributed systems.	
3.	History of Unix and Linux, Linux	
	Overview, Processes in Linux,	
	Memory management in Linux, I/O	
	in Linux, Linux file system, security	
	in Linux. Android	
4.	History of windows through	
	Windows 10, programming	
	windows, system structure,	
	processes and threads in windows,	
	memory management, caching in	
	windows, I/O in windows,	
	Windows NT file system, Windows	
	power management, Security in	
	windows.	